Content-based Representations of audio using Siamese neural networks
نویسندگان
چکیده
In this paper, we focus on the problem of content-based retrieval for audio, which aims to retrieve all semantically similar audio recordings for a given audio clip query. This problem is similar to the problem of query by example of audio, which aims to retrieve media samples from a database, which are similar to the user-provided example. We propose a novel approach which encodes the audio into a vector representation using Siamese Neural Networks. The goal is to obtain an encoding similar for files belonging to the same audio class, thus allowing retrieval of semantically similar audio. Using simple similarity measures such as those based on simple euclidean distance and cosine similarity we show that these representations can be very effectively used for retrieving recordings similar in audio content.
منابع مشابه
Learning Deep Representations of Medical Images using Siamese CNNs with Application to Content-Based Image Retrieval
Deep neural networks have been investigated in learning latent representations of medical images, yet most of the studies limit their approach in a single supervised convolutional neural network (CNN), which usually rely heavily on a large scale annotated dataset for training. To learn image representations with less supervision involved, we propose a deep Siamese CNN (SCNN) architecture that c...
متن کاملEmotions are Universal: Learning Sentiment Based Representations of Resource-Poor Languages using Siamese Networks
Machine learning approaches in sentiment analysis principally rely on the abundance of resources. To limit this dependence, we propose a novel method called Siamese Network Architecture for Sentiment Analysis (SNASA) to learn representations of resource-poor languages by jointly training them with resource-rich languages using a siamese network. SNASA model consists of twin Bi-directional Long ...
متن کاملProbabilistic Siamese Network for Learning Representations
Probabilistic Siamese Network for Learning Representations Chen Liu Master of Applied Science Graduate Department of Electrical and Computer Engineering University of Toronto 2013 We explore the training of deep neural networks to produce vector representations using weakly labelled information in the form of binary similarity labels for pairs of training images. Previous methods such as siames...
متن کاملSiamese Convolutional Networks for Cognate Identification
In this paper, we present phoneme level Siamese convolutional networks for the task of pair-wise cognate identification. We represent a word as a two-dimensional matrix and employ a siamese convolutional network for learning deep representations. We present siamese architectures that jointly learn phoneme level feature representations and language relatedness from raw words for cognate identifi...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.10974 شماره
صفحات -
تاریخ انتشار 2017